Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice

Daniel H. O’Connor,1 Simon P. Peron,1 Daniel Huber,1 and Karel Svoboda1,*
1Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
*Correspondence: svobodak@janelia.hhmi.org
DOI 10.1016/j.neuron.2010.08.026

SUMMARY
Classical studies have related the spiking of selected neocortical neurons to behavior, but little is known about activity sampled from the entire neural population. We recorded from neurons selected independent of spiking, using cell-attached recordings and two-photon calcium imaging, in the barrel cortex of mice performing an object localization task. Spike rates varied across neurons, from silence to >60 Hz. Responses were diverse, with some neurons showing large increases in spike rate when whiskers contacted the object. Nearly half the neurons discriminated object location; a small fraction of neurons discriminated perfectly. More active neurons were more discriminative. Layer (L) 4 and L5 contained the highest fractions of discriminating neurons (∼63% and 79%, respectively), but a few L2/3 neurons were also highly discriminating. Approximately 13,000 spikes per activated barrel column were available to mice for decision making. Coding of object location in the barrel cortex is therefore highly redundant.

INTRODUCTION
Information in the mammalian brain is represented by patterns of action potentials in neuronal populations (Adrian, 1932; Barlow, 1953; Hubel and Wiesel, 1962). One parameter describing neuronal populations is the fraction of neurons that are activated under particular behavioral conditions. A small fraction of active neurons is suggestive of sparse codes, which have high representational capacity and robustness (Olshausen and Field, 2004). A related parameter is the number of neurons carrying information about the sensory stimulus or particular phases of behavior (Shadlen and Newsome, 1994, 1998). Individual neurons in sensory cortex can discriminate stimuli comparable to behavioral performance of the entire animal (Britten et al., 1992; Celebrini and Newsome, 1994; Cohen and Newsome, 2009; Croner and Albright, 1999; Hernandez et al., 2000; Newsome et al., 1989; Palmer et al., 2007; Prince et al., 2000; Uka and DeAngelis, 2003; but see Cook and Maunsell, 2002). Redundancy in representations is a signature of fault tolerant coding. Understanding the patterns of activation across all members of a neuronal population, rather than specific subsets only, is fundamental to deciphering the principles by which information is represented in the neocortex.

Common methods for measuring action potentials in the mammalian brain are not appropriate for sampling activity from all neurons in a population, including neurons that fire infrequently. Traditional extracellular recordings of action potentials (Hubel, 1957) have a selection bias for active neurons (Hromadka et al., 2008; Shoham et al., 2006); neurons that rarely spike go undetected. In addition, investigators often isolate single neurons for recording based on their responses to particular stimuli. More recent methods for recording multiple single neurons in parallel (Buzsaki, 2004) depend on large numbers of spikes to perform robust spike waveform clustering, again imposing a bias against neurons with low spike rates.

Methods for imaging neuronal populations in vivo, such as Ca2+ imaging, do account for all neurons in a recorded volume. However, cellular imaging is limited to superficial layers within the neocortex (Helmchen and Denk, 2005; Svoboda and Yasuda, 2006) and the available calcium sensors have so far not permitted reliable recording of individual action potentials (Sato et al., 2007; Tian et al., 2009). In addition, imaging with cellular resolution is rarely performed under conditions where the probed brain areas are known to be engaged in a behavior (Komiyama et al., 2010).

Intracellular and cell-attached recordings allow unambiguous detection of action potentials and do not suffer from activity-based selection biases. These methods have been applied in anesthetized (Brecht et al., 2003; de Kock et al., 2007; Helmchen et al., 1999; Manns et al., 2004; Moore and Nelson, 1998; Svoboda et al., 1997, 1999) and awake (Crochet and Petersen, 2006; de Kock and Sakmann, 2008, 2009; Gentet et al., 2010; Hromadka et al., 2008; Margrie et al., 2002; Poulet and Petersen, 2008) animals and generally have revealed low firing rates in sensory cortical areas. However, such recordings have not been reported under conditions where the probed neurons are required to drive a behavior. These methods also tend to report lower firing rates than traditional extracellular recordings (Brecht et al., 2003; Brecht and Sakmann, 2002; Margrie et al., 2002; Shoham et al., 2006). For these reasons, the activity of populations of sensory cortex neurons during performance of a sensory task is unknown.

The vibrissa representation area of the primary somatosensory cortex (barrel cortex) has favorable properties for relating sensory stimuli, neuronal responses, and behavior in the context of defined anatomical circuits (Diamond et al., 2008; Kleinfeld et al., 2006; O’Connor et al., 2009; Petersen, 2007). Each cortical layer corresponds neatly to distinct sets of excitatory neurons that participate in specific circuits (O’Connor et al., 2009; Petersen, 2007). Individual whiskers are mapped onto particular
“barrel” columns within the barrel cortex (Simons, 1978; Welker, 1971; Woolsey and Van der Loos, 1970). Several studies have described the responses of individual cortical neurons to passive whisker deflections in anesthetized animals (Armstrong-James et al., 1992; Brecht et al., 2003; de Kock et al., 2007; de Kock and Sakmann, 2008; Manns et al., 2004; Moore and Nelson, 1998; Simons, 1978). A smaller number of studies have examined single-unit (Curtis and Kleinfeld, 2009; Jadhav et al., 2009; Vijayan et al., 2010) or multiunit (Simons et al., 1992) responses in barrel cortex of behaving animals. Very few studies have measured activity in animals performing choice-based somatosensory tasks in which a correct response depends on the value of a stimulus so that animals must attend to the stimuli (Krupa et al., 2004; Pantoja et al., 2007; von Heimendahl et al., 2007). Neuronal activity during such task-driven somatosensation can differ dramatically from passive stimulation (Krupa et al., 2004). Here, we used loose seal cell-attached recordings and two-photon imaging to measure barrel cortex activity in a recently developed head-fixed object localization task (O’Connor et al., 2010).

RESULTS

We trained head-fixed mice to perform a whisker-based barrel cortex-dependent object localization task. Mice used their whiskers to determine the location of a small pole presented to one side of the head, and reported with go/no-go licking whether the pole was in a target (go) or a distracter (no-go) position (Figure 1). Mice had all but a single row of their whiskers trimmed to lengths too short to reach the pole. Three spared whiskers (D2-D4 and C1-C3) for the electrophysiological and imaging experiments, respectively) routinely contacted the pole and could thus provide information to the mouse about the pole location. For each trial we acquired high-speed video of the whiskers. We made loose-seal cell-attached recordings (Hromadka et al., 2008; Figure S1 available online) targeted to relevant whisker barrel columns using intrinsic signal imaging. This recording method selects neurons independent of action potential activity and permits accurate sampling of the spike trains produced by a population of neurons (de Kock et al., 2007; de Kock and Sakmann, 2008; Hromadka et al., 2008). Here, we applied this method to barrel cortex of animals performing tactile localization. We recorded from neurons in all cortical layers. Mice performed hundreds of trials in individual sessions (Figure S1E) while we recorded action potentials from single neurons. In separate experiments, we used two-photon calcium imaging (Svoboda and Yasuda, 2008) to monitor populations of layer 2/3 neurons during performance of the tactile localization task.

Barrel Cortex Neurons Show Diverse Response Types and Large Modulation of Activity

We sampled from all neurons encountered by our recording pipette (see Supplemental Experimental Procedures). Responses differed dramatically among neurons (Figure 2), even within individual electrode penetrations (Figure S2A). A few neurons had high firing rates (up to ~60 Hz), while other neurons did not spike (Figures 2 and S2B). Mice typically began whisker movement shortly before the stimulus pole was within reach of the whiskers (O’Connor et al., 2010; Figure 1C). Peristimulus...
time histograms (PSTHs) aligned to the start of the trial often showed robust modulations in firing rate over the course of the trial (Figures 2 and S2). This is because the first whisker-object contact occurred reproducibly within 100 ms (PSTH bin size 50 ms). As the pole moved into reach of the whiskers, mice whisked over the target location, causing strong whisker-object contact on go trials (O’Connor et al., 2010). Mice largely avoided the distracter location, implying that on no-go trials contacts were sparser and weaker. This active sensing strategy thus resulted in strong forces on the whiskers on go trials, and weaker forces, or even no contact, on no-go trials. A common motif in the pattern of neural activity therefore involved a phasic increase in spike rate on go trials, but not on no-go trials (Figures 2B and 2C). Other modulations in firing rate comprised: tonic increases in rate (Figures 2F and S2C), tonic decreases in rate (Figures 2D and 2E; see also Curtis and Kleinfeld, 2009; Jadhav et al., 2009; Krupa et al., 2004) or multimodal responses (Figure 2F; Krupa et al., 2004; Pantoja et al., 2007). We also encountered neurons with more complex firing patterns, such as responding bimodally with first a decrease and then an increase in rate, elevated firing rates during the intertrial interval, or responding mainly while the mouse consumed rewards (Figure S2C). Most modulated neurons appeared to differentiate trial type. Many neurons showed significant changes in spike rate during episodes of free whisking in air (not against the pole) compared with periods of nonwhisking, in a layer-specific manner (Figure S3A; see also de Kock et al., 2007).

A Small Fraction of Neurons Fires the Vast Majority of Spikes

We quantified the firing rates of barrel cortex neurons across cortical layers (Figure 3). We first report the overall firing rates, averaged across all trial epochs (f_{overall}). Averaged across layers the firing rate was $f_{\text{overall}} = 7.4$ Hz (Table 1; $N = 106$ neurons, including N = 14 “silent neurons” whose spontaneous firing rates have an upper bound of < 0.0083 Hz and were found predominantly in L2/3 and L6; purple symbols in Figure 3A; see Experimental Procedures). Forty-four percent of neurons had $f_{\text{overall}} < 1$ Hz. However, the distribution of firing rates featured a long tail caused by a small fraction of highly active neurons. Eleven percent had $f_{\text{overall}} > 20$ Hz.

Median firing rates for each layer, including silent neurons, were (in Hz): L2/3, 0.18; L4, 3.48; L5, 9.13; L6, 0.48 (Table 1). The firing rates differed significantly across layers, with L2/3 and L6 showing lower rates than L4 and L5 (Figure S3C; one-tailed K-S test on L2/3/L6 versus L4/L5, $p < 0.001$).

The least active half of the neurons contributed less than 3% of the spikes (Figure 3D). Conversely, a small fraction of neurons fired the vast majority of spikes, with the most active 10% of neurons contributing ~50% of the spikes (Figure 3D; see also Hromadka et al., 2008).

Similar results were found when analyzing spike rates across different epochs of the behavioral task, including the intertrial interval. A small fraction of neurons always produced the vast majority of spikes (Figure S3B). For individual neurons, spike
rates could differ significantly between periods of task performance and nonperformance (Figure S3C), but at the level of the neuronal population the average spike rates did not change significantly.

Highly Active Neurons Are Sparsely Distributed in L2/3

Cell-attached recordings have some drawbacks. Only one neuron is interrogated at a time, and the cell type and location, with respect to other neurons, are not well defined. To overcome these limitations, we performed in vivo calcium imaging of population activity in L2/3 (Andermann et al., 2010; Greenberg et al., 2008; Kerr et al., 2007; Komiyama et al., 2010; Sato et al., 2007; Stosiek et al., 2003) during the tactile localization task.

We delivered the genetically encoded indicator GCaMP3 (Tian et al., 2009) to barrel cortex via infection with adenoassociated virus (AAV2/1, synapsin-1 promoter). The behavioral apparatus was mounted under a custom microscope. Continuous two-photon calcium imaging (frame rate, 4 Hz) was performed through an implanted imaging window. Regions of interest corresponding to individual neurons (108–177 neurons per animal) were defined in a semiautomated manner. Fluorescence transients, corresponding to small bursts of action potentials (>3; Tian et al., 2009), were detected automatically (see Supplemental Experimental Procedures).

The large range of spike rates observed in cortical neurons (Figure 3) creates challenges for calcium imaging. At one extreme, the limited sensitivity of current methods precludes detecting activity in neurons showing very low activity (<3 action potentials in 0.5 s); only robust bursts of activity are therefore detected (Tian et al., 2009). At the other extreme, indicator saturation may obscure firing rate modulation in neurons with the highest firing rates. Rates of fluorescence transients are therefore expected to be much lower than spike rates. Simulations of fluorescence data based on electrophysiology spike times are consistent with this view (Figure S4).

A sparse subset of L2/3 neurons showed robust fluorescence transients (“events”) of up to ~220% ΔF/F (Figure 4A) (event rates, 0–0.12 Hz) with rapid kinetics (decay time, t1/2, 543 ± 462 ms; median ± interquartile range (IQR); Figure S4F). High event rates were seen in only a small subset of neurons, with the majority showing low, near zero, event rates (Figures 4B and 4C). Active neurons were apparently randomly distributed within L2/3. Retrospective histological analysis revealed that most of the neurons showing robust fluorescence changes were not GABAergic (not shown). The imaging experiments therefore confirm that a sparse subset of neurons produces most of the activity in L2/3.

What Barrel Cortex Neurons Tell the Mouse about Object Location

To determine the pole location, mice whisked against the pole, inducing contact forces and moments, which in turn caused spikes in barrel cortex neurons (Figure 5). In addition to being a source of feedback control for further whisking (Mitchinson et al., 2007; O’Connor et al., 2010), spikes in the barrel cortex provided a basis for the mouse’s decision. In the remainder of
this paper, we explore what information individual barrel cortex neurons might provide about object location. First, we estimate the neural signals in the barrel cortex that could contribute to the mouse’s sensory-motor decision. Next, we directly ask what fraction of barrel cortex neurons discriminates between trial types, and how well individual neurons do so. We find that, despite the many relatively silent neurons in barrel cortex, a large fraction of neurons distinguishes between go and no-go trials.

The Number of Spikes Evoked on Different Trial Types during Object Localization

As the pole moved into the whisker field, mice explored the vicinity of the target location, and largely avoided the distracter location (O’Connor et al., 2010). On go trials, whiskers contacted the pole, often multiple times (up to ten), and underwent large-amplitude bending before the reaction time (Figures 5 and 6A). The spiking response of individual neurons in barrel cortex therefore reflects multiple whisker-pole contacts, usually on multiple whiskers, as well as progressive increases in whisker bending (Figure 6A), which causes lateral and axial stresses in the follicle (Birdwell et al., 2007). In contrast, when the pole was in the distracter position, contact between whiskers and the pole was much less frequent and weaker (not shown). The mouse’s motor strategy therefore produced different temporal patterns of forces on the whiskers on different trial types.

Table 1. Firing Rates of Barrel Cortex Neurons during Active Somatosensation

<table>
<thead>
<tr>
<th>Layer</th>
<th>Mean ± SD</th>
<th>Median ± IQR</th>
<th>N</th>
<th>Mean ± SD</th>
<th>Median ± IQR</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2/3</td>
<td>3.04 ± 7.36</td>
<td>0.18 ± 1.58</td>
<td>41</td>
<td>4.16 ± 8.33</td>
<td>0.62 ± 2.51</td>
<td>30</td>
</tr>
<tr>
<td>L4</td>
<td>11.96 ± 16.50</td>
<td>3.48 ± 11.57</td>
<td>27</td>
<td>11.96 ± 16.50</td>
<td>3.48 ± 11.57</td>
<td>27</td>
</tr>
<tr>
<td>L6</td>
<td>2.30 ± 4.09</td>
<td>0.48 ± 8.11</td>
<td>14</td>
<td>3.85 ± 4.17</td>
<td>1.12 ± 8.45</td>
<td>12</td>
</tr>
<tr>
<td>All</td>
<td>7.35 ± 12.59</td>
<td>1.54 ± 9.45</td>
<td>106</td>
<td>8.47 ± 13.16</td>
<td>2.63 ± 9.93</td>
<td>92</td>
</tr>
</tbody>
</table>

Table 1. Firing Rates of Barrel Cortex Neurons during Active Somatosensation

SD, sample standard deviation; IQR, interquartile range.

We measured the number of spikes evoked (i.e., number of spikes minus the number of spikes expected from the baseline firing rate) prior to the mean reaction time (Figure 6B) for hit and correct rejection trials. Most neurons showed increases in spike rate (the “evoked” number of spikes can be negative; Figure 6B), with a mean (±SD) number of evoked spikes of 2.4 ± 7.5 (median ± IQR: 0 ± 1.7) on hit trials and −0.04 ± 1.7 (median ± IQR: 0 ± 0.36) on correct rejection trials (Figures 6B and 6C). These distributions differed among cortical layers (Figures 6B and 6C), with L4 and L5 neurons showing a larger number of evoked spikes compared to L2/3 and L6 neurons (one-tailed K-S test on L4/L5 versus L2/3/L6, p = 0.008). Thirty-four percent of all neurons showed significant (positive or negative) evoked spikes on hit trials (Figure 6D, left; permutation test; see Supplemental Experimental Procedures). In contrast, few neurons showed significant evoked spikes on correct rejection trials (4%; Figure 6D, right).

The mouse presumably bases its decision on differences in spiking during go and no-go trials. The distribution of mean spike count difference between hits and correct rejections had a median of zero spikes (Figure 7A). Treating increases and decreases in spike count difference as equivalent (by taking the absolute value of the spike count difference distribution), the median was 0.72 spikes (Figure 7A). Spike count differences between trial types were higher for L4 and L5 neurons than for L2/3, L3, and L6 neurons (one-tailed K-S test on L4/L5 versus L2/3/L6, p = 0.008). Thirty-four percent of all neurons showed significant (positive or negative) evoked spikes on hit trials (Figure 6D, left; permutation test; see Supplemental Experimental Procedures). In contrast, few neurons showed significant evoked spikes on correct rejection trials (4%; Figure 6D, right).

The mouse presumably bases its decision on differences in spiking during go and no-go trials. The distribution of mean spike count difference between hits and correct rejections had a median of zero spikes (Figure 7A). Treating increases and decreases in spike count difference as equivalent (by taking the absolute value of the spike count difference distribution), the median was 0.72 spikes (Figure 7A). Spike count differences between trial types were higher for L4 and L5 neurons than for L2/3, L3, and L6 neurons (one-tailed K-S test on L4/L5 versus L2/3/L6, p = 0.008). Thirty-four percent of all neurons showed significant (positive or negative) evoked spikes on hit trials (Figure 6D, left; permutation test; see Supplemental Experimental Procedures). In contrast, few neurons showed significant evoked spikes on correct rejection trials (4%; Figure 6D, right).

The mouse presumably bases its decision on differences in spiking during go and no-go trials. The distribution of mean spike count difference between hits and correct rejections had a median of zero spikes (Figure 7A). Treating increases and decreases in spike count difference as equivalent (by taking the absolute value of the spike count difference distribution), the median was 0.72 spikes (Figure 7A). Spike count differences between trial types were higher for L4 and L5 neurons than for L2/3, L3, and L6 neurons (one-tailed K-S test on L4/L5 versus L2/3/L6, p = 0.008). Thirty-four percent of all neurons showed significant (positive or negative) evoked spikes on hit trials (Figure 6D, left; permutation test; see Supplemental Experimental Procedures). In contrast, few neurons showed significant evoked spikes on correct rejection trials (4%; Figure 6D, right).

The mouse presumably bases its decision on differences in spiking during go and no-go trials. The distribution of mean spike count difference between hits and correct rejections had a median of zero spikes (Figure 7A). Treating increases and decreases in spike count difference as equivalent (by taking the absolute value of the spike count difference distribution), the median was 0.72 spikes (Figure 7A). Spike count differences between trial types were higher for L4 and L5 neurons than for L2/3, L3, and L6 neurons (one-tailed K-S test on L4/L5 versus L2/3/L6, p = 0.008). Thirty-four percent of all neurons showed significant (positive or negative) evoked spikes on hit trials (Figure 6D, left; permutation test; see Supplemental Experimental Procedures). In contrast, few neurons showed significant evoked spikes on correct rejection trials (4%; Figure 6D, right).

The mouse presumably bases its decision on differences in spiking during go and no-go trials. The distribution of mean spike count difference between hits and correct rejections had a median of zero spikes (Figure 7A). Treating increases and decreases in spike count difference as equivalent (by taking the absolute value of the spike count difference distribution), the median was 0.72 spikes (Figure 7A). Spike count differences between trial types were higher for L4 and L5 neurons than for L2/3, L3, and L6 neurons (one-tailed K-S test on L4/L5 versus L2/3/L6, p = 0.008). Thirty-four percent of all neurons showed significant (positive or negative) evoked spikes on hit trials (Figure 6D, left; permutation test; see Supplemental Experimental Procedures). In contrast, few neurons showed significant evoked spikes on correct rejection trials (4%; Figure 6D, right).

The mouse presumably bases its decision on differences in spiking during go and no-go trials. The distribution of mean spike count difference between hits and correct rejections had a median of zero spikes (Figure 7A). Treating increases and decreases in spike count difference as equivalent (by taking the absolute value of the spike count difference distribution), the median was 0.72 spikes (Figure 7A). Spike count differences between trial types were higher for L4 and L5 neurons than for L2/3, L3, and L6 neurons (one-tailed K-S test on L4/L5 versus L2/3/L6, p = 0.008). Thirty-four percent of all neurons showed significant (positive or negative) evoked spikes on hit trials (Figure 6D, left; permutation test; see Supplemental Experimental Procedures). In contrast, few neurons showed significant evoked spikes on correct rejection trials (4%; Figure 6D, right).

The mouse presumably bases its decision on differences in spiking during go and no-go trials. The distribution of mean spike count difference between hits and correct rejections had a median of zero spikes (Figure 7A). Treating increases and decreases in spike count difference as equivalent (by taking the absolute value of the spike count difference distribution), the median was 0.72 spikes (Figure 7A). Spike count differences between trial types were higher for L4 and L5 neurons than for L2/3, L3, and L6 neurons (one-tailed K-S test on L4/L5 versus L2/3/L6, p = 0.008). Thirty-four percent of all neurons showed significant (positive or negative) evoked spikes on hit trials (Figure 6D, left; permutation test; see Supplemental Experimental Procedures). In contrast, few neurons showed significant evoked spikes on correct rejection trials (4%; Figure 6D, right).
A Large Fraction of Neurons Discriminate Trial Types

We used detection analysis (Green and Swets, 1966) to determine how well individual neurons distinguished between hit and correct rejection trials (Figures 8, S6, and S7; see Experimental Procedures). Because the temporal profile of firing rates carries stimulus information, we used a PSTH-based classification scheme rather than one based on spike count alone (see Experimental Procedures). We focused on correct trials (i.e., hits and correct rejections) because we could not be certain that on error trials the whisking, and hence the neural activity, was related to the object localization task (including both correct and incorrect trials gave similar results; Figure S7A). Activity up to the reaction time was considered. Overall, the firing of 43% ± 3% of neurons (including “silent neurons”) discriminated between trial types (Figure 8A). Individual neurons could discriminate either by increases or decreases in firing rate (Figure 2) or both (Figure S2C). Several individual neurons discriminated nearly perfectly (up to 99.6% of trials categorized correctly, Figure 8A), better than the mouse (Figure S7A). Other neurons showed no discrimination (Figure 8A; trials categorized correctly, Figure 8A), worse than the mouse’s task. As the pole comes into reach of the whiskers, the mouse whisks, makes multiple whisker-pole contacts, and experiences progressive whisker bending (and changing moment at the follicle). These events are associated with spiking of the barrel cortex neuron; 730 µm (L5). The mouse presumably monitors the population of barrel cortex neurons to decide whether to make a go or no-go response. We performed analyses to address the question of how much information individual barrel cortex neurons provide about the correct behavioral response. Light gray slanted bar at top indicates that the pole is in motion; dark gray horizontal bar indicates that the pole is at the end of its range. Electrophysiology trace (high-pass filtered voltage) shows action potentials from the recorded neuron (principal whisker: D4). Whisker angle (θ) and change in curvature ($\Delta \kappa$) are shown for whiskers D4 (blue), D3 (green), and D2 (purple). Contact times (onset times only) are shown by the colored tick marks above the whisker position traces.

L2/3 and L6 neurons (Figure 7A; one-tailed K-S test on L4/L5 versus L2/3/L6, p < 0.001). Overall, 35% of neurons showed a significant difference in spike count between hit and correct rejection trials (Figure 7B).

The distribution of differences in mean spike count between hits and correct rejections (Figures 7A and 7B) shows that a small minority of neurons provides the majority of the total spike count difference (Figure 7C). Fifty percent of the differential spikes were provided by only 8% of the neurons (Figure 7C).

We used published values for the number of neurons in a barrel column (L1/L2/3: 1947; L4: 1796; L5: 1316; L6: 1415; Lefort et al., 2009; our estimates will change according to the cell counts used; cf. Tsai et al., 2009) to estimate the total difference in spike count overall between hits and correct rejections for a barrel column, prior to the mean reaction time (Figure S5). L4 and L5 showed the largest differences in spike count (Figure S5B; differences of 7141 ± 2896 and 5395 ± 2176 spikes/trial). The L2/3 spike count difference was 407 ± 673 spikes/trial (one outlier near the L2/3 → L4 border, apparent in histograms of Figures 6B, 6C, and 7A, was excluded). Thus, the total difference in spike count between hits and correct rejections for one barrel column was 13,725 ± 3743 spikes/trial.

Because the mice routinely made whisker-pole contact with up to three whiskers (D2–4), as many as 41,000 differential spikes (hits minus correct rejections) in barrel cortex were available to mice in making their sensory-motor decision. This number does not account for activity in barrel columns corresponding to cut whiskers, which may also contribute spikes relevant to the sensory-motor decision, especially in mice that have experienced prolonged whisker trimming (Fox, 2002).

The differences among layers in evoked activity (Figure 6) paralleled differences in baseline activity (Figure S3B; “intertrial interval” shows baseline activity), with L2/3 and L6 showing in both cases less activity than L4 and L5.
Discriminative Neurons Are Sparse in L2/3 and Include Excitatory Neurons

A sparse subset of individual L2/3 neurons was highly discriminative in calcium imaging experiments. These neurons showed an increased number of fluorescence transients during either hit or correct rejection trials (Figures 9 and S8). Retrospective immunohistochemistry (Figure S9) revealed that the discriminative neurons were not GABAergic (Figures 9 and S8) and were therefore presumably excitatory.

DISCUSSION

Quantitative sensory decision-making paradigms in primates have been critical to reveal the relationship between neuronal activity in the neocortex and behavioral choice (Newsome et al., 1989; Romo et al., 1998). Here, we have extended this approach to head-fixed mice performing an active tactile object localization task (O’Connor et al., 2010), to study the neural basis of vibrissa-based somatosensation. We used an in vivo approach to head-fixed mice performing an active tactile object localization task (O’Connor et al., 2010), to study the neural basis of vibrissa-based somatosensation. We used an in vivo approach to head-fixed mice performing an active tactile object localization task (O’Connor et al., 2010), to study the neural basis of vibrissa-based somatosensation. We used an in vivo
Neuron
Barrel Cortex Activity during Object Localization

Figure 7. The Spike Count Difference between Hit and Correct Rejection Trials

(A) Distribution of the mean spike count on hit trials minus the mean spike count on correct rejection trials, i.e., of the differential spikes between trial types (computation illustrated in D). The full data set ("All") is shown in gray; individual layers are distinguished by color. The median of the distribution is zero spikes. Treating increases and decreases in spike count as equally relevant by taking the distribution of absolute value differences gives a median of 0.72 spikes; i.e., the median number of differential spikes for hits and correct rejections is ~3/4 spike per trial per neuron.

(B) Same data as in (A), with neurons ranked by the difference in spike count between hits and correct rejections. Thirty-five percent of neurons show a significant difference in the spike count between hits and correct rejections.

Twenty-eight of one-hundred and six neurons showed significantly higher spike counts on hit trials compared with correct rejection trials (purple points above the line at 0). Nine of one-hundred and six showed significantly lower spike counts on hits compared with correct rejections (purple points below zero).

(C) Plotting cumulative fraction of neurons against cumulative fraction of the total rectified spike count difference between hits and correct rejections shows that most differential spikes come from a small fraction of neurons.

(D) Schematic of computation of "AP count difference." The number of spikes prior to the mean reaction time (measured for go-trials only; spikes before reaction time shown in green) on no-go trials was subtracted from the number of spikes prior to the mean reaction time on go trials. See Supplemental Experimental Procedures for details.

In (A–C), all panels include only spikes prior to the mean reaction time and include "silent neurons." See also Figure S5.

electrophysiology recording method (de Kock et al., 2007; de Kock and Sakmann, 2008; DeWeese et al., 2003; Hromadka et al., 2008; Margrie et al., 2002) that does not select for neurons based on firing rate and that does not affect the intracellular composition of the recorded cells as does whole-cell recording (Margrie et al., 2002). Action potential rates of most neurons were far lower than those often reported from sensory cortex of animals performing sensory choice-based tasks (Shadlen and Newsome, 1994, 1998). This likely reflects the fact that neurons recorded in such studies are typically isolated based on robust spiking, often in response to particular stimuli. This leads to a sampling bias that has long been appreciated (Mountcastle, 1995; Wurtz, 1968). The most active 10% of neurons contributed the majority of spikes. A small subset of neurons showed overall spike rates that could exceed 50 Hz. These highly active neurons have been reported in the barrel cortex of behaving rats (Curtis and Kleinfeld, 2009; Jadhav et al., 2009; Krupa et al., 2004; Pantoja et al., 2007; Vijayan et al., 2010; with Curtis and Kleinfeld, 2009; Jadhav et al., 2009; Vijayan et al., 2010 showing a >10-fold spread of overall action potential rates). Both overall (Otazu et al., 2009) and stimulus-specific activity levels (Hubel et al., 1959; Moran and Desimone, 1985) are known to be regulated by the attentional or motivational state of the animal. Possible differences in the spike rates recorded in ours and other studies (Crochet and Petersen, 2006; de Kock and Sakmann, 2008, 2009; Margrie et al., 2002; Poulet and Petersen, 2008) likely reflect behavioral state (see also Vijayan et al., 2010).

The electrophysiological recording method used in this study, loose-seal cell-attached patch-clamping, does not select on the basis of neuronal activity, but recordings are established based on the ability of the pipette and a cell to come into contact such that the electrical resistance across the pipette tip is increased. Large cells may therefore be recorded with a higher probability than small cells, as their greater surface area presumably makes contact between pipette and cellular membrane more likely.

In our electrophysiological experiments in trained mice, it was necessary to record from multiple neurons across multiple days; we therefore were unable to routinely label recorded neurons. Estimates of recording depth were instead based on micromanipulator readings and parallel calibrations based on histology. The expected error in localizing the pipette (±30 µm, see Supplemental Experimental Procedures) is expected to smear the boundary between layers, with disproportionally larger effects on the thinner layers. In addition, in a small fraction of cases we may have recorded from dendrites of neurons and thereby misassigned the neuron’s layer. In our two-photon imaging experiments, laminar location was unambiguous.
We often observed robust stimulus-evoked modulation of activity. In the barrel cortex, the evoked activity of individual neurons therefore often falls dramatically outside the range of spontaneous activity (in contrast to Luczak et al., 2009; Figure S3D). Our results further show that coding in barrel cortex, in particular, during performance of a somatosensation-dependent task, is not necessarily sparse (Jadhav et al., 2009).

Some neurons discriminated trial types nearly perfectly, in agreement with prior studies from behaving primates in which single neurons outperform the animal (de Lafuente and Romo, 2005; Hernandez et al., 2000; Newsome et al., 1989; Palmer et al., 2007). Over half of all neurons did not discriminate above chance levels (Figure 8A). Discrimination performance depended on the overall spike rate of the neuron and on cortical layer (Figure 8). There is therefore a large heterogeneity in the amount of information individual barrel cortex neurons carry about the task. L4 and L5 contained the most discriminative neurons and the highest fractions of discriminative neurons (Figure 8B); a few L2/3 neurons also discriminated at high levels (up to 92% correct). Thus, while L4 and L5 discriminated best on average, L2/3 contained a sparse group of discriminative neurons, which may be sufficient to drive behavior (Huber et al., 2008). The differences in discrimination ability across layers likely reflect the fact that neurons in different cortical layers correspond to distinct nodes in the cortical wiring diagram (Thomson and Lamy, 2007). Whether animals base sensory decisions on an average across all sensory neurons of a class or on only the most discriminative neurons is a long-standing and unresolved question (Parker and Newsome, 1998). Gain- and loss-of-function manipulations promise to shed light on this issue (O’Connor et al., 2009).

By combining in vivo population calcium imaging with post hoc immunohistochemistry, we found that a sparse population of highly discriminative neurons in L2/3 included non-GABAergic (presumably excitatory) neurons. However, GABAergic neurons may also discriminate. First, we identified relatively few GABAergic neurons in the in vivo population calcium imaging data (Figure S9). Second, the relationship between spiking activity and GCaMP3 fluorescence, important for interpreting the latter, has been measured for L2/3 pyramidal (Tian et al., 2009) but not GABAergic neurons. GABAergic neurons in barrel cortex L2/3 show high spike rates and behavior-dependent
modulations (Gentet et al., 2010). Although spike waveform measurements from our electrophysiological recordings did not yield clear clusters of putative fast- and regular-spiking neurons (Figure S1D), at least some discriminative neurons in L2/3 had high spike rates and narrow, symmetric spike waveforms (cf. Figures S1D and S4D). These discriminative neurons may have been fast-spiking interneurons (see also Hromadka et al., 2008).

Patterns of activity in barrel cortex during object localization were highly different for go and no-go trials. Mice appear to have tailored their whisking strategy to produce divergent interactions between whisker and pole (O’Connor et al., 2010) and therefore distinct patterns of activity in the barrel cortex. This active behavioral strategy focuses on the most relevant stimulus, resulting in enhanced signal-to-noise in the underlying neural code.

In general, the fraction of discriminative neurons in barrel cortex is likely to depend on both the stimuli and on the behavioral relevance of the stimuli. For instance, if the mouse must make a choice based on the stimuli that determines whether it will be rewarded or punished (i.e., if the stimuli must be attended), the activity of a cortical neuron may be altered due to attention (Hubel et al., 1959; Moran and Desimone, 1985) and neuromodulatory inputs (Metherate and Ashe, 1991; Svoboda et al., 1999). The simplicity of our task and the high level of motivation of the mice may have contributed to redundancy in coding. In tasks where stimuli do not need to be identified or localized (Jadhav et al., 2009), the activity patterns in somatosensory cortex resulting from different stimuli may be less well separated than in tasks requiring active discrimination (Krupa et al., 2004; von Heimen-dahl et al., 2007).

Finally, we found dramatic differences among cortical layers in overall spike rates and in the degree to which neurons of different layers carried information about the trial type. Neurons in L2/3, a major source of corticocortical output from the barrel cortex, showed sparse and low activity. Assuming that neurons in three to five barrel columns contribute to coding object location, we estimate that 2000–3000 spikes in L2/3 underlie coding for object location. This is well in excess of the ~300 spikes from L2/3 neurons required to drive behavior (Huber et al., 2008). In L5, another major source of corticocortical output, ~18,000 spikes are evoked during localization, even though animals can report short action potential trains from single L5 neurons (Houweling and Brecht, 2008). The cortical code for object
location (at least at distances well above threshold) is both redundant and strikingly different among different output cell classes.

EXPERIMENTAL PROCEDURES

Details of the behavioral task, apparatus, high-speed videography, and whisker tracking have been described elsewhere (O’Connor et al., 2010). See also Supplemental Experimental Procedures.

Mice

All mice used in this study were adult (>P60) C57BL/6Crl males (Charles River) for electrophysiology, four in vivo imaging. For approximately 10 days prior to training, and on days without behavioral testing, mice were limited to 1 ml/day of water. On days with behavioral sessions, mice generally obtained all water for the day during the session (approximately 1 ml). Food was available ad libitum. The weight and health of the mice were monitored daily. Mice were occasionally supplemented with supplemental water beyond their daily ration of 1 ml. All procedures were in accordance with protocols approved by the Janelia Farm Research Campus Institutional Animal Care and Use Committee.

Behavior Apparatus

The stimulus object was a 1/16 in diameter pole (stainless steel dowel pin, McMaster) coupled to a linear slider (Schneeberger) that moved the pole in the anterior-posterior dimension, driven by a stepper motor with submicrometer resolution (Zaber). This assembly was mounted on a pneumatic linear slider (Festo) that rapidly (>0.5 s) brought the stimulus into and out of reach of the whiskers. The pole moved along a trajectory that was at a lateral distance of 9.8 or 12 mm from the midline of the mouse. The apparatus was enclosed in a custom light isolation box. Mice were monitored with an infrared-sensitive video camera (Super Circuits) using 940 nm illumination. Puffs of compressed air (typically 10 psi) for punishment were delivered through a small metal tube (<2.3 mm ID) pointed at the face from a distance of several centimeters, and were gated by a solenoid valve (Nresearch). The apparatus was controlled by an open-source software system (http://brodylab.princeton.edu/bccontrol; Z. Mainen, C. Brody, C. Cullinan).

Mice were placed in an aluminum (32 mm ID) tube such that their heads extended out the front. A surgically implanted headpost was immobilized using a custom mount extending to the sides of the mice. Mice were thereby headfixed in a natural crouching position with their whiskers free to move around the space surrounding their heads.

A custom acrylic “lickport” was used to record licks and to deliver water rewards was placed within reach of the tongue (Figure 1A). Licks were recorded using a phototransistor. Water rewards were delivered by gravity into the lickport under solenoid valve control. To limit the time water remained at the lickport, and to prevent pooling, water was pumped out of the lickport using a peristaltic pump.

Behavioral Task

We describe here the behavioral task used in the electrophysiology experiments. For imaging experiments, details differed as specified in the Supplementary Experimental Procedures. Trial types (go or no-go) were chosen randomly, subject to the constraint that not more than three consecutive trials of the same type were allowed. The pole was positioned for the upcoming trial during the intertrial interval. Target and distracter positions were fixed and differed by 4.29 mm (go posterior, no-go anterior). The trial began with the pole descending (time of descent ∼0.5 s) into reach of the whiskers. The mouse had until 2 s from the start of the pole descent to either lick (“go response”) or withhold a lick (“no-go” response). However, licks were only counted as responses if they occurred in the “answer period,” a window that ended at 2 s and followed a 0.75 s “grace period” starting at the onset of the pole descent, during which licks had no consequences. Thus, mice had to either make a lick response within a 1.25 s window or withhold licking (as appropriate). After a no-go response the pole started ascending out of the whisker field exactly 2 s after starting its descent into the whisker field. Correct no-go responses (“correct rejections”) were not rewarded, and incorrect no-go responses (“misses”) were not punished. Licks occurring within the answer period were recorded as go responses. Correct go responses (“hits”) were rewarded with a drop of water (<8 μl). The trial paused for 2 s to give the mouse time to drink. Incorrect go responses (“false alarms”) triggered a 200 ms airpuff and the start of a “time-out” period in which the trial was paused for 5 s. If the mouse licked during this time-out, it received an identical airpuff and the time-out period was restarted. Each trial ended with the pole (a drop (−0.75 s)).

Electrophysiology

To implant the titanium headpost, mice were anesthetized with isoflurane (~2% by volume in O2; SurgiVet, Smiths Medical). Mice were allowed at least 3 days to recover prior to water restriction. The headpost had a ∼5.9 × 5.2 mm hole that allowed access to the skull over left barrel cortex and around which a dental acrylic bowl was shaped. This recording “well” was filled with Kwik-Cast silicone elastomer (World Precision Instruments) and covered with a thin layer of dental acrylic. After training and intrinsic signal imaging, a cranialotomy was made at the location of the left-hemisphere targeted (D4, D3, or D2) barrel column. The bone was thinned using a round-head FG one-fourth carbide dental bur (Henry Schein) with a pneumatic dental drill (Midwest Dental Corp). After the bone became thin enough that it would easily flake, a 28 gauge hypodermic needle was used to carefully remove a small piece (diameter ~100–200 μm). The first pipette used for cell-attached recordings punctured the dura, which, presumably because of the small size of the cranialotomy, adhered well to the surrounding skull.

Loose-seal cell-attached recordings were made using an Axopatch 200B amplifier (Molecular Devices), in the craniontomy targeted by intrinsic signal imaging. “Silent neurons” referred to in the text and figures are neurons with spontaneous spike rates <0.0083 Hz for which we did not collect behavioral trials. See Supplemental Experimental Procedures.

Two-Photon Calcium Imaging

The genetically encoded calcium indicator GCaMP3 (Tian et al., 2009) was expressed under the human synapsin-1 promoter following infection with recombinant adenoviruses (serotype 2/1; produced by the University of Pennsylvania Gene Therapy Program Vector Core). Surgical conditions were as described above. A craniontomy (~2 mm in diameter) was made over left barrel cortex of P40–50 mice. The dura was left intact. Virus-containing solution was slowly injected (20 nl per site, four to eight sites per mouse; depth <300 μm) into the exposed cortex. The injection system comprised a pulled glass pipette (broken and beveled to ~25–30 μm OD; Drummond Scientific, Wiretrol II Capillary Microdispenser) backfilled with mineral oil. A fitted plunger was inserted into the pipette and advanced to displace the contents using a hydraulic manipulator (Narashige, MO-10). Retraction of the plunger was used to load the pipette with virus. The injection pipette was positioned with a Sutter MP-285 manipulator. Following injection, the craniontomy was covered with a glass coverslip sealed in place with dental acrylic (Jet Repair Acrylic, Lang Dental Mfg.). A titanium headpost was attached to the skull with cyanoacrylate glue and dental acrylic to permit head fixation, as with mice prepared for cell-attached recordings.

Intrinsic signal imaging was used to localize C-row barrel columns. A region of interest for two-photon imaging was chosen based on the overlap of the localized C-row columns and GCaMP3 fluorescence. We were able to visualize barrels and confirm barrel column locations post hoc in histological sections stained with an anti-GFP antibody. Fifteen to twenty days after virus infection, mice began training on the localization task and concomitant two-photon imaging sessions. Sessions analyzed here occurred between days 35 and 45 postinfection.

The behavior apparatus was mounted under a custom two-photon microscope. GCaMP3 was excited at 1000 nm (typically 20–80 mW at the back aperture) with a Ti:Sapphire laser (Mai Tai, Spectra Physics) and imaged through a Nikon 16×, 0.8 NA objective. Emission light passed through a 565 DCXR dichroic (Chroma Technology) and a BG32 filter (Chroma Technology) and was detected by a GaAsP photomultiplier tube (1070PB-40, Hamamatsu). Images (512 pixels [0.6 μm/pixel] x 256 pixels [1.2 μm/pixel]; were
acquired continuously at 4 Hz using ScanImage software (Iyer et al., 2009; Pologruto et al., 2003). Synchronization with the real-time behavior software occurred via pulses sent to ScanImage.

Electrophysiology Data Set and Analysis

The data set comprised 92 neurons recorded during task performance, plus 14 “silent neurons,” recorded in three craniotomies each whisker barrel columns D2, D3, D4) in three mice (Figure S1E). Spike times were determined by finding local maxima above a threshold (Figure S1A) after high-pass filtering (Butterworth filter, 500 Hz cutoff). The threshold was adjusted for each trial and spike detection was confirmed. In many recordings, smaller amplitude spikes, presumably from nearby nonpatched neurons, were apparent. These secondary neurons were unambiguously separable from the patched cell by simple amplitude thresholding or the relevant trials were rejected from the analysis.

To estimate the depths of recorded neurons, we used the micromanipulator axial depth readings and subtracted 100 μm to account for estimated dimpling (Figure S1C). All depths reported in the text and figures are so adjusted. Laminar boundaries were considered to occur at 418 μm (L2/3→L4), 588 μm (L4→L5), and 890 μm (L5→L6) (Lefort et al., 2009). PSTHs for display in figures were binned in 100 ms bins; error shading shows SEM. For all analyses using PSTHs the bin size was 50 ms.

Unless otherwise specified, and with the exception of “silent neurons,” all analyses include only data from periods in which the mouse was performing (Figure S1E).

Single-Neuron Discrimination Analyses

We quantified the discrimination performance of single neurons using a receiver-operating characteristic (ROC) analysis, with classification based on the similarity of each trial to the mean PSTHs for hit and correct rejection trials (Figure S6A).

Each trial was assigned a “decision variable” score (DV) equal to the dot-product similarity to the mean PSTH for hit trials minus the dot-product similarity to the mean PSTH for correct rejection trials. These mean PSTHs were calculated separately for each trial, with the current trial omitted from the mean PSTH for its trial type. That is, $DV = t_i \ast (R_{\text{hit}}) - (R_{\text{cr}})$ where t_i is the single-trial PSTH for the ith trial, R_{hit} and R_{cr} are the mean hit and correct rejection PSTHs. Larger DV imply greater similarity to the mean hit PSTH compared with the mean correct rejection PSTH. An observer (classifier) could assign individual trials as either a hit or a correct rejection based on whatever the value of this decision variable for a given trial was greater or less than a criterion value (DV > crit: “hit,” else: “correct rejection;” Figure S6A). To determine what fraction of trials an ideal observer could classify correctly based on this decision variable, an ROC curve (Green and Swets, 1966) was constructed. The ROC curve was obtained by varying the criterion across DV. At each criterion value, the probability that a correct rejection trial exceeded the criterion value was plotted (on the x axis) against the probability that a hit trial exceeded the criterion (on the y axis; Figure S6A). The area under the ROC curve (AUC) is equivalent to the fraction of trials that would be decided correctly by an ideal observer making decisions based on DV (Green and Swets, 1966). We used AUC as the measure of single-neuron performance (“fraction correct” in Figures 8, S4, S6B, and S7). Fraction correct for individual neurons as a function of time from the start of the trial, T (Figures 8E and S7B), was computed as the area under the ROC curve using all PSTH bins with bin centers at times $t \leq T$.

For analyses of spiking activity “prior to the reaction time,” only PSTH bins up to and including the bin containing the mean reaction time for each recording were included. For analyses of spiking activity over the “full trial,” all PSTH bins covering 5 s from the start of each trial were used.

Calcium Imaging Data Analysis

Data from four mice in seven total sessions were analyzed. Regions of interest (ROIs) corresponding to individual neurons were defined by manually outlining an ROI border and then semiautomatically selecting pixels that were part of the neuron. Since GCaMP3 generally fills the cytosol and not the nucleus (Tian et al., 2009), it was important to omit the nucleus from the ROI. In mice where multiple sessions were used, a normalized cross-correlation algorithm using small rectangular subregions around the ROI as target images was employed to align ROIs across sessions.

For each neuron, $\Delta F/F$ was calculated as $(F - F_0) / F_0$, where F is the time series of raw fluorescence averaged over all the neuron’s pixels and F_0 is the mode of the raw density estimate (MATLAB R2008b “ksdensity” function) of F within a moving window of 55 s. For traces shown in Figures 9 and S8 only, F_0 was the mean of F over the first four frames of each trial. Transient increases in $\Delta F/F$ (“events”) were detected using a simple threshold-based method similar to published methods (Dombeck et al., 2007).

We adapted the single-neuron discrimination analysis used for the cell-attaching recordings to the fluorescence data (Figures 9 and S8). Because of the limited temporal resolution of the imaging data, we used a method based on event count rather than the full-time-varying modulation pattern used in the ideal-observer analysis of electrophysiology data (Figure 8). This adaptation is equivalent to the spike count version of the ideal-observer analysis (Figure S7C) described above, but with events substituted for spikes. We considered only those events occurring in the first 2 s of the trial, corresponding to the frame before the mice typically started licking to indicate a go response (because in the imaging experiments mice received a reward only after a delay, the precise reaction time was difficult to quantify). Because of limited temporal resolution of the calcium indicator, typically either zero or one event occurred in this period.

SUPPLEMENTAL INFORMATION

Supplemental information includes Supplemental Experimental Procedures and figures and can be found with this article online at doi:10.1016/j.neuron.2010.08.026.

ACKNOWLEDGMENTS

This work was funded by the Howard Hughes Medical Institute. We thank Nathan Clack and Gene Myers for whisker tracking software; Jinyang Liu and Tim O’Connor for programming; Lin Tian and Loren Looger for GCaMP3 virus; Dan Flickinger for mechanical design; Nick Betley, Amy Hu, Brenda Shields, Boris Zemelman, Tomáš Hromádka and Tony Zador for advice; Andrew Hires, Tomáš Hromádka and Miguel Maravall for comments on the manuscript.

Accepted: August 5, 2010
Published: September 22, 2010

REFERENCES

Accepted: August 5, 2010
Published: September 22, 2010

REFERENCES

Barrel Cortex Activity during Object Localization

